Towards a *p*-adic analytic Riemann-Hilbert Correspondence

Finn Wiersig

University of Oxford, St Peter's College

May 29, 2024

Overview

- 0. Warm up
- 1. The complex Riemann-Hilbert correspondence
- 2. Towards a p-adic Riemann-Hilbert correspondence
- 3. *p*-adic Hodge theory
- 4. Towards a p-adic Riemann-Hilbert correspondence revisited

Warm up

Derived Morita equivalence

- R a ring
- S a ring
- T an R-S-bimodule

Define Solution and Reconstruction functors

Sol:
$$\mathbf{D}(R) \to \mathbf{D}(S)^{\mathrm{op}}$$
, $M^{\bullet} \mapsto \mathsf{R} \operatorname{Hom}_{R}(M^{\bullet}, T)$
Rec: $\mathbf{D}(S)^{\mathrm{op}} \to \mathbf{D}(R)$, $N^{\bullet} \mapsto \mathsf{R} \operatorname{Hom}_{S}(N^{\bullet}, T)$.

T is tilting if $\rho: R \xrightarrow{\cong} R \operatorname{Hom}_S(T, T)$ as complexes of R-modules.

Lemma

If T is tilting, $M^{\bullet} \stackrel{\cong}{\longrightarrow} \operatorname{Rec}(\operatorname{Sol}(M^{\bullet}))$ for any bounded perfect complex M^{\bullet} of R-modules. $\Rightarrow \operatorname{Sol}: \mathbf{D}^{\operatorname{b}}_{\operatorname{perf}}(R) \hookrightarrow \mathbf{D}^{\operatorname{b}}(S)^{\operatorname{op}}$.

Warm up

Derived Morita equivalence

Lemma

If T is tilting, $M^{\bullet} \stackrel{\cong}{\longrightarrow} \operatorname{Rec}(\operatorname{Sol}(M^{\bullet}))$ for any bounded perfect complex M^{\bullet} of R-modules. $\Rightarrow \operatorname{Sol}: \mathbf{D}^{\operatorname{b}}_{\operatorname{perf}}(R) \hookrightarrow \mathbf{D}^{\operatorname{b}}(S)^{\operatorname{op}}$.

Proof.

 M^{\bullet} perfect \leadsto suffices to prove the Theorem for $M^{\bullet}=R$. Then

$$R \to \operatorname{\mathsf{Rec}}\left(\operatorname{\mathsf{Sol}}\left(R\right)\right) \cong R \operatorname{\mathsf{Hom}}_{\mathcal{S}}(T,T)$$

is an isomorphism because T is tilting.

The proof of the Lemma applies in great generality.

Infinite order differential operators on complex manifolds

X complex analytic manifold,

 \mathcal{O} sheaf of holomorphic functions on X,

 \mathcal{D}^{∞} sheaf of infinite order differential operators on X.

Example

For $\mathbb{D}:=\mathbb{D}_{\mathbb{C}}(1)\subseteq\mathbb{C}$ the open unit disc with coordinate z,

$$\mathcal{D}^{\infty}\left(\mathbb{D}
ight)=\left\{ \sum_{lpha\geq0}f_{lpha}\partial^{lpha}\colon\sum_{lpha\geq0}f_{lpha}\zeta^{lpha}lpha!\in\mathcal{O}\left(\mathbb{D} imes\mathbb{C}
ight)\cong\mathcal{O}\left(\mathcal{T}^{st}\,\mathbb{D}
ight)
ight\}$$

and $\partial \cdot f = \frac{d}{dz} f$ for all $f \in \mathcal{O}(\mathbb{D})$.

à la Prosmans-Schneiders

X complex analytic manifold

- ullet \mathcal{D}^{∞} sheaf of infinite order differential operators
- ullet \mathbb{C}_X constant sheaf
- $\mathcal O$ sheaf of holomorphic functions is a sheaf of $\mathcal D^\infty\text{-}\mathbb C_X\text{-bimodules}$

Define Solution and Reconstruction functors

Sol:
$$\mathbf{D}(\mathcal{D}^{\infty}) \to \mathbf{D}(\mathbb{C}_X)^{op}, \mathcal{M}^{\bullet} \mapsto \mathsf{R} \underline{\mathcal{H}om}_{\mathcal{D}^{\infty}}(\mathcal{M}^{\bullet}, \mathcal{O})$$

Rec: $\mathbf{D}(\mathbb{C}_X)^{op} \to \mathbf{D}(\mathcal{D}^{\infty}), \mathcal{F}^{\bullet} \mapsto \mathsf{R} \underline{\mathcal{H}om}_{\mathbb{C}}(\mathcal{F}^{\bullet}, \mathcal{O}).$

à la Prosmans-Schneiders

Theorem (Ishimura, 1978; Prosmans-Schneiders, 2000)

 \mathcal{O} is tilting; that is, $\rho \colon \mathcal{D}^{\infty} \xrightarrow{\cong} R \underbrace{\mathcal{H}om}_{\mathbb{C}} (\mathcal{O}, \mathcal{O}).$

Consider only the $\mathcal{O} \to \mathcal{O}$ such that for all open $U \subseteq X$, the induced $\mathcal{O}(U) \to \mathcal{O}(U)$ are continuous.

Topological Reconstruction Theorem (Prosmans-Schneiders, 2000)

 $\begin{array}{ll} \mathcal{M}^{\bullet} \stackrel{\cong}{\longrightarrow} \mathsf{Rec}\left(\mathsf{Sol}\left(\mathcal{M}^{\bullet}\right)\right) \text{ for any bounded perfect complex } \mathcal{M}^{\bullet} \text{ of } \\ \mathcal{D}^{\infty}\text{-modules.} \Rightarrow \mathsf{Sol}\colon \operatorname{\textbf{D}}^{b}_{\mathsf{perf}}\left(\mathcal{D}^{\infty}\right) \hookrightarrow \operatorname{\textbf{D}}^{b}\left(\mathbb{C}_{X}\right)^{\mathsf{op}}. \end{array}$

à la Prosmans-Schneiders

Topological Reconstruction Theorem (Prosmans-Schneiders, 2000)

 $\mathcal{M}^{\bullet} \overset{\cong}{\longrightarrow} \mathsf{Rec}\left(\mathsf{Sol}\left(\mathcal{M}^{\bullet}\right)\right) \text{ for any bounded perfect complex } \mathcal{M}^{\bullet} \text{ of } \\ \mathcal{D}^{\infty}\text{-modules. } \Rightarrow \mathsf{Sol}\colon \mathbf{D}^{b}_{\mathsf{perf}}\left(\mathcal{D}^{\infty}\right) \hookrightarrow \mathbf{D}^{b}\left(\mathbb{C}_{X}\right)^{\mathsf{op}}.$

Remarks

- (i) Given $P \in \mathcal{D}^{\infty}$, $Sol(\mathcal{D}^{\infty}/\mathcal{D}^{\infty}P) \approx solutions$ of P = 0. (Related to Hilbert 21st problem.)
- (ii) Prosmans-Schneiders' Theorem generalises work of Kashiwara and Mebkhout (1984), and bypasses the usage of the six-functor formalism for holonomic \mathcal{D}^{∞} .

Towards a *p*-adic Riemann-Hilbert Correspondence Setup and motivation

p prime, k/\mathbb{Q}_p finite, X smooth rigid-analytic k-variety, $\widehat{\mathcal{D}}$ sheaf of infinite order differential operators on X (Ardakov-Wadsley).

Motivation

Locally analytic representation theory of p-adic Lie groups (Schneider-Teitelbaum, 2001); Ardakov (2021): study these via $\widehat{\mathcal{D}}$

Goal

Replicate Prosmans-Schneiders' Theorem for $\widehat{\mathcal{D}}$ -modules.

Towards a p-adic Riemann-Hilbert Correspondence

 $\widehat{\mathcal{D}}$ as a quantisation of the cotangent bundle

Example

For $\mathbb{D} := \mathbb{D}_k(p^0)$ the closed unit disc,

$$\begin{split} \widehat{\mathcal{D}}\left(\mathbb{D}\right) &= \left\{ \sum_{\alpha \geq 0} a_{\alpha} \partial^{\alpha} \colon \sum_{\alpha \geq 0} a_{\alpha} \zeta^{\alpha} \alpha! \in \mathcal{O}\left(T^{*} \mathbb{D}^{1}\right) \cong \mathcal{O}\left(\mathbb{D} \times \mathbb{A}_{k}^{1, \mathsf{an}}\right) \right\} \\ &= \varprojlim_{r \in \mathbb{N}} \left\{ \sum_{\alpha \geq 0} a_{\alpha} \partial^{\alpha} \colon \sum_{\alpha \geq 0} a_{\alpha} \zeta^{\alpha} \alpha! \in \mathcal{O}\left(\mathbb{D} \times \mathbb{D}_{k}\left(p^{r}\right)\right) \right\} \\ &= \left\{ \sum_{\alpha \geq 0} a_{\alpha} \partial^{\alpha} \colon \|a_{\alpha}\| p^{r\alpha} \to 0 \text{ for all } r \in \mathbb{N} \right\}. \end{split}$$

10/17

Towards a *p*-adic Riemann-Hilbert Correspondence Naïve *p*-adic Prosmans-Schneiders

X smooth rigid-analytic variety over k

- ullet $\widehat{\mathcal{D}}$ sheaf of infinite order differential operators
- k_X constant sheaf
- \mathcal{O} sheaf of holomorphic functions is a sheaf of $\widehat{\mathcal{D}}$ - k_X -bimodules

Theorem (Ardakov-Ben-Bassat, 2018)

 \mathcal{O} is not tilting since $\rho \colon \widehat{\mathcal{D}} \hookrightarrow \underline{\mathcal{H}om}_k(\mathcal{O},\mathcal{O})$ is not epi.

p-adic Hodge theory

The ill-behaviour of non-Archimedean analysis

Observation (Berkovich, 2006)

The augmented de Rham complex

$$0 \to k_X \to \mathcal{O} \stackrel{\nabla}{ o} \Omega^1 \to \dots$$

is not exact in any degree.

k is too small to contain integrals of differential forms.

Idea (Fontaine, 1982)

Replace k by a much larger field B_{dR} of p-adic periods.

 $B^+_{\mathsf{dR}} \subseteq B_{\mathsf{dR}}$ discrete valuation ring with residue field $\mathbb{C}_p := \widehat{\mathbb{Q}_p}$.

p-adic Hodge theory

p-adic Hodge theory for rigid analytic varieties

Scholze introduced relative versions

 $X \rightsquigarrow X_{\text{pro\'et}}$ pro-étale site

 $k_X \rightsquigarrow \mathbb{B}_{dR}$ de Rham period sheaf (on $X_{pro\acute{e}t}$)

 $\mathcal{O} \leadsto \mathcal{O}\mathbb{B}_{dR}$ de Rham period structure sheaf (on $X_{pro\acute{e}t}$).

Let $\nu \colon X_{\mathsf{pro\acute{e}t}} \to X$ denote the canonical projection.

Theorem (Scholze, 2013)

The augmented de Rham complex

$$0 \to \mathbb{B}_{dR} \to \mathcal{O}\mathbb{B}_{dR} \overset{\nabla}{\to} \mathcal{O}\mathbb{B}_{dR} \otimes_{\nu^{-1}\mathcal{O}} \nu^{-1}\Omega^1 \to \dots$$

on $X_{pro\acute{e}t}$ is exact.

p-adic Hodge theory meets $\widehat{\mathcal{D}}$

X smooth rigid-analytic variety over k; $X_{\text{pro\'et}}$ pro-étale site and $\nu \colon X_{\text{pro\'et}} o X$ canonical projection

- ullet $\widehat{\mathcal{D}}$ sheaf of infinite order differential operators
- \mathbb{B}_{dR} de Rham period sheaf (on $X_{pro\acute{e}t}$)
- $\mathcal{O}\mathbb{B}_{dR}$ de Rham period structure sheaf (on $X_{pro\acute{e}t}$) is not a sheaf of $\nu^{-1}\widehat{\mathcal{D}}$ -modules!

 $\mathcal{O}\mathbb{B}_{dR}$ is too big because \mathbb{B}_{dR} is too big.

p-adic Hodge theory meets $\widehat{\mathcal{D}}$ *p*-adic Hodge theory for rigid analytic varieties

Substitute

 $X \rightsquigarrow X_{\text{pro\'et}}$ pro-étale site

 $k_X \rightsquigarrow \mathbb{B}_{la}$ locally analytic period sheaf (on $X_{pro\acute{e}t}$)

 $\mathcal{O} \leadsto \mathcal{O}\mathbb{B}_{la}$ locally analytic period structure sheaf (on $X_{pro\acute{e}t}$).

Let $\nu \colon X_{\mathsf{pro\acute{e}t}} \to X$ denote the canonical projection.

Theorem (W., 2023)

The augmented de Rham complex

$$0 \to \mathbb{B}_{\text{la}} \to \mathcal{O}\mathbb{B}_{\text{la}} \overset{\nabla}{\to} \mathcal{O}\mathbb{B}_{\text{la}} \otimes_{\nu^{-1}\mathcal{O}} \nu^{-1}\Omega^1 \to \dots$$

on $X_{pro\acute{e}t}$ is exact.

Towards a *p*-adic Riemann-Hilbert Correspondence B_{la} meets $\widehat{\mathcal{D}}$

X smooth rigid-analytic variety over k;

 $X_{\mathsf{pro\acute{e}t}}$ pro-étale site and $\nu \colon X_{\mathsf{pro\acute{e}t}} o X$ canonical projection

- ullet $\widehat{\mathcal{D}}$ sheaf of infinite order differential operators
- ullet \mathbb{B}_{la} locally analytic period sheaf (on $X_{\mathsf{pro\acute{e}t}}$)
- $\mathcal{O}\mathbb{B}_{la}$ locally analytic period structure sheaf (on $X_{pro\acute{e}t}$) is a sheaf of $\nu^{-1}\widehat{\mathcal{D}}$ - \mathbb{B}_{la} -bimodules.

Define Solution and Reconstruction functors

$$\mathsf{Sol} \colon \: \mathbf{D}\left(\widehat{\mathcal{D}}\right) \to \mathbf{D}\left(\mathbb{B}_{\mathsf{la}}\right)^{\mathsf{op}}, \mathcal{M}^{\bullet} \mapsto \mathsf{R}\,\mathsf{Hom}_{\nu^{-1}\,\widehat{\mathcal{D}}}\left(\nu^{-1}\mathcal{M}^{\bullet}, \mathcal{O}\mathbb{B}_{\mathsf{la}}\right),$$

$$\mathsf{Rec} \colon \left. \mathbf{D} \left(\mathbb{B}_{\mathsf{la}} \right)^{\mathsf{op}} \to \mathbf{D} \left(\widehat{\mathcal{D}} \right), \mathcal{F}^{\bullet} \mapsto \mathsf{R} \, \nu_* \, \mathsf{R} \, \mathsf{Hom}_{\mathbb{B}_{\mathsf{la}}} \left(\mathcal{F}^{\bullet}, \mathcal{O}\mathbb{B}_{\mathsf{la}} \right).$$

Towards a p-adic Riemann-Hilbert Correspondence

A Prosmans-Schneiders-style reconstruction conjecture

Conjecture

For any C-complex $\mathcal{M}^{\bullet} \in \mathbf{D}(\widehat{\mathcal{D}})$ (Bode, 2023),

$$\mathcal{M}^{ullet} \stackrel{\cong}{\longrightarrow} \operatorname{\mathsf{Rec}}\left(\operatorname{\mathsf{Sol}}\left(M^{ullet}\right)\right).$$

In particular, Sol: $\mathbf{D}_{\mathcal{C}}\left(\widehat{\mathcal{D}}\right) \hookrightarrow \mathbf{D}\left(\mathbb{B}_{\mathsf{la}}\right)^{\mathsf{op}}$ is fully faithful.

Theorem (W., 2023)

$$\rho\colon\thinspace \widehat{\mathcal{D}} \stackrel{\cong}{\longrightarrow} \nu_* \, \underline{\mathcal{H}\mathit{om}}_{\mathbb{B}_{\mathsf{la}}} \, \big(\mathcal{O}\mathbb{B}_{\mathsf{la}}, \mathcal{O}\mathbb{B}_{\mathsf{la}}\big).$$